
Blizzard's GRP Image Format

from Lambchops, (a boy from AUS)

You can often find me online at server.war2.ru☺the world's last active Warcraft 2 Server.

 (has been for the last 10 years and still going strong – drop in any time for a free nostalgia hit)

This document describes the GRP graphics format
 which was developed by Blizzard Entertainment and used to store and render
8bit graphics elements in various game titles first released in the mid to late 90's.
Specifically it relates to the GRP format as it was used in Warcraft 2.

* Although I'm not aware of it being the case, it's quite possible that some time in the last 20 years Blizzard could
have expanded the specification to include support for any number of later formats and/or instructions, if so then this
information is not intended to describe any such new-fangled shenanigans.

What's here?

 ☺ A description of the GRP format and some thoughts on why it's
implemented that way and how it is used by the Warcraft 2 game engine

Overview:
GRPs hold one or more (generally related) 8 bit images. Typically they hold

multiple images of the same subject matter that are used for animations.

The format allows for transparency without declaring a particular palette entry to be the
“transparent color”. GRPs are designed for use within an 8 bit palette base graphics
environment, however they contain no palettes and describe only pixel data. The visible pixels
are pre-packed in a bytestream that is optimised for fast rendering over the top of a background
image using non-graphics specific hardware (i.e. Just a 386 or 486 CPU) as it was developed
before the widespread adoption of modern GPUs.

http://forum.war2.ru/index.php?action=profile;u=2501
http://en.war2.ru/

Contents:

Overview

The GRP Header

Canvas Size

Figure 1 – The Standard Peon GRP

The Frame Headers

Figure 2 – Mage Lightning GRP
Figure 3 – Mage lightning GRP and Frame Headers
Figure 4– Unit GRP Comparison

 The Game Engine vs. The Display Engine.

Deciding which frame to render where

Player Colors

End of the Line: The Pixel Data

The Data Header

Figure 5 – Portraits and Buttons

Decoding the Pixel Bytestream

Figure 6 - Pixel Data for mage lightning – frame 6

GRP Format - Quick Reference

In Conclusion

GRP Decoding Routine ASM Source

The GRP Header:
The first structure in a GRP is very simple. It is 6 bytes in length and contains
just the number of images in the set and the canvas size, like this:

WORD NumberOfFrames
WORD CanvasWidth
WORD CanvasHeight

Number Of Frames:

This is the number of Frame Headers that follow the GRP Header.
This is not necessarily the number of images that are present in the GRP.

Canvas Size:

Each GRP set has what I call a “canvas” size, which is an arbitrary bounding box that
all of the images in the set must fit within. The exact size is not terribly critical as it is a
imaginary construct, the only real use of which is to define the centre of the X and Y
axis for the purposes of centring the image on a specific location, or for mirroring the
image if required. Although these things are not part of the GRP format itself, it is
designed to facilitate them being achieved at runtime with a minimum of effort.

As the maximum lateral shift available from a single GRP 'instruction' is 127 pixels, the
format is designed for and best suited to image sets <= 128 pixels in width, however
there is nothing I am aware of to preclude stringing 2 or more 'SHIFT' instructions
together to allow for larger images, although I have not seen this done in any of the
Blizzard GRPs that I have examined. It should also be noted that the maximum non-
transparent width and height for any individual frame is hard limited to 255 pixels by the
storage of LineWidth and NumberOfLines as type BYTE in the Frame Headers.

The largest GRP canvas sizes in Warcraft 2 are for town halls etc., which are 4x4 game
squares in size. With each square being 32x32 pixels, so these units fill their canvas size
which is fixed at 128x128. All the other building canvas sizes are set at 64x64 for 2x2
buildings (farms, towers etc.), 96x96 for 3x3 (most others), the only exception being oil
platforms which are 96x96 for what is essentially a 2x2 structure as they also hold the
image of the underlying oil patch. In contrast many of the 'unit' canvas sizes are quite
generous, for example the peon image sets use a 72x72 canvas despite hardly ever
getting near the edge and certainly never touching it (see figure 1).

Figure 1 – The Standard Peon GRP

The 65 “standard peon” frames all sit quite comfortably inside the peon's 72x72 pixel
canvas (the blue grid). Being well less than 128 pixels in width, its size makes no real

difference as only the visible pixel data is encoded in the GRP. The 'SHIFT'
instruction takes up one byte regardless, for any SHIFT < 128 and uses no more or

less CPU time to calculate the offset for any value up to that limit. Each frame is
referenced sequentially in the GRP file, they are arranged here so the different types

of images can be easily identified. First are the 5 'stand' frames, then 20 'move'
frames, followed by 25 'attack' frames and finally the 15 'dead' frames.

The Frame Headers:

Immediately following the GRP Header is one Frame Header for each frame in the set. Frame
Headers are 8 Bytes long, so the frame header section of the GRP is 8xNumberOfFrames bytes
in size. Each frame header is as follows:

BYTE XOffset
BYTE YOffset
BYTE LineWidth
BYTE NumberOfLines
DWORD OffsetToData

The values are used as follows:
Starting from the top of the (imaginary) canvas, YOffset pixel lines are skipped on the
destination bitmap before unpacking the first pixel line. Each line of pixel data then has
an implied lateral shift of Xoffset pixels from the edge of the canvas before any
further shifting of the pixel output location is applied by the bytestream data. There are
exactly NumberOfLines lines of pixel data in the frame, and each pixel line is exactly
LineWidth pixels long, including any 'SHIFT' instructions, but not the XOffset
value. The OffsetToData member contains the offset from the base of the GRP to the
start of the Data Header structure (see below).

 ☼ Keeping track of the number of pixels described in each line
of pixel data is the only reliable way to decode a GRP frame.

Whether it's an SHIFT, a REPEAT or a PIXEL instruction just add it all up,
and when it equals LineWidth then that line is done.

The Frame Headers appear immediately after the GRP Header, with their order
defining the number of each frame. Each Frame Header contains a DWORD offset to the
pixel data that could be anywhere at all in the GRP object and does not necessarily
have to appear in any specific order. This feature allows a single chunk of
bytestream data to be defined as the target for any number of declared frames.

Figure 2 – Mage Lightning GRP

The GRP for mage's 'lightning' missile weapon contains 30 frames. The first 5
frames are unique, however the remaining 25 frames consist of 5 groups of 5

identical frames each.

In fact, this GRP contains 30 frame headers, but only 10 frames of pixel data. The
'repeat' frames are just repeats of the same 8 byte Frame Header which, of course
has the same value for OffsetToData so points to the same block of pixel data
for each frame.

Figure 3 shows the actual header values for the mage lightning GRP.

 GRP Header
0000: NumberOfFrames : 30
0002: CanvasWidth : 32
0004: CanvasHeight : 32

Frame Header: Frames 1 - 10
0006: F01 XOffset : 11
0007: F01 YOffset : 11
0008: F01 LineWidth 11
0009: F01 NumberOfLines 24
000A: F01 OffsetToData: 0x000000F6
000E: F02 XOffset : 5
000F: F02 YOffset : 5
0010: F02 LineWidth 23
0011: F02 NumberOfLines 23
0012: F02 OffsetToData: 0x000001E9
0016: F03 XOffset : 4
0017: F03 YOffset : 4
0018: F03 LineWidth 24
0019: F03 NumberOfLines 11
001A: F03 OffsetToData: 0x000002EB
001E: F04 XOffset : 4
001F: F04 YOffset : 4
0020: F04 LineWidth 23
0021: F04 NumberOfLines 23
0022: F04 OffsetToData: 0x00000399
0026: F05 XOffset : 10
0027: F05 YOffset : 10
0028: F05 LineWidth 11
0029: F05 NumberOfLines 24
002A: F05 OffsetToData: 0x0000049C
002E: F06 XOffset : 5
002F: F06 YOffset : 5
0030: F06 LineWidth 19
0031: F06 NumberOfLines 20
0032: F06 OffsetToData: 0x0000058F
0036: F07 XOffset : 5
0037: F07 YOffset : 5
0038: F07 LineWidth 19
0039: F07 NumberOfLines 20
003A: F07 OffsetToData: 0x0000058F
003E: F08 XOffset : 5
003F: F08 YOffset : 5
0040: F08 LineWidth 19
0041: F08 NumberOfLines 20
0042: F08 OffsetToData: 0x0000058F
0046: F09 XOffset : 5
0047: F09 YOffset : 5
0048: F09 LineWidth 19
0049: F09 NumberOfLines 20
004A: F09 OffsetToData: 0x0000058F
004E: F10 XOffset : 5
004F: F10 YOffset : 5
0050: F10 LineWidth 19
0051: F10 NumberOfLines 20
0052: F10 OffsetToData: 0x0000058F

Frame Header: Frames 11 - 20
0056: F11 XOffset : 1
0057: F11 YOffset : 1
0058: F11 LineWidth 31
0059: F11 NumberOfLines 32
005A: F11 OffsetToData: 0x00000684
005E: F12 XOffset : 1
005F: F12 YOffset : 1
0060: F12 LineWidth 31
0061: F12 NumberOfLines 32
0062: F12 OffsetToData: 0x00000684
0066: F13 XOffset : 1
0067: F13 YOffset : 1
0068: F13 LineWidth 31
0069: F13 NumberOfLines 32
006A: F13 OffsetToData: 0x00000684
006E: F14 XOffset : 1
006F: F14 YOffset : 1
0070: F14 LineWidth 31
0071: F14 NumberOfLines 32
0072: F14 OffsetToData: 0x00000684
0076: F15 XOffset : 1
0077: F15 YOffset : 1
0078: F15 LineWidth 31
0079: F15 NumberOfLines 32
007A: F15 OffsetToData: 0x00000684
007E: F16 XOffset : 0
007F: F16 YOffset : 0
0080: F16 LineWidth 32
0081: F16 NumberOfLines 31
0082: F16 OffsetToData: 0x0000091E
0086: F17 XOffset : 0
0087: F17 YOffset : 0
0088: F17 LineWidth 32
0089: F17 NumberOfLines 31
008A: F17 OffsetToData: 0x0000091E
008E: F18 XOffset : 0
008F: F18 YOffset : 0
0090: F18 LineWidth 32
0091: F18 NumberOfLines 31
0092: F18 OffsetToData: 0x0000091E
0096: F19 XOffset : 0
0097: F19 YOffset : 0
0098: F19 LineWidth 32
0099: F19 NumberOfLines 31
009A: F19 OffsetToData: 0x0000091E
009E: F20 XOffset : 0
009F: F20 YOffset : 0
00A0: F20 LineWidth 32
00A1: F20 NumberOfLines 31
00A2: F20 OffsetToData: 0x0000091E

Frame Header: Frames 21 - 30
00A6: F21 XOffset : 0
00A7: F21 YOffset : 0
00A8: F21 LineWidth 32
00A9: F21 NumberOfLines 27
00AA: F21 OffsetToData: 0x00000BCD
00AE: F22 XOffset : 0
00AF: F22 YOffset : 0
00B0: F22 LineWidth 32
00B1: F22 NumberOfLines 27
00B2: F22 OffsetToData: 0x00000BCD
00B6: F23 XOffset : 0
00B7: F23 YOffset : 0
00B8: F23 LineWidth 32
00B9: F23 NumberOfLines 27
00BA: F23 OffsetToData: 0x00000BCD
00BE: F24 XOffset : 0
00BF: F24 YOffset : 0
00C0: F24 LineWidth 32
00C1: F24 NumberOfLines 27
00C2: F24 OffsetToData: 0x00000BCD
00C6: F25 XOffset : 0
00C7: F25 YOffset : 0
00C8: F25 LineWidth 32
00C9: F25 NumberOfLines 27
00CA: F25 OffsetToData: 0x00000BCD
00CE: F26 XOffset : 0
00CF: F26 YOffset : 0
00D0: F26 LineWidth 31
00D1: F26 NumberOfLines 25
00D2: F26 OffsetToData: 0x00000D1D
00D6: F27 XOffset : 0
00D7: F27 YOffset : 0
00D8: F27 LineWidth 31
00D9: F27 NumberOfLines 25
00DA: F27 OffsetToData: 0x00000D1D
00DE: F28 XOffset : 0
00DF: F28 YOffset : 0
00E0: F28 LineWidth 31
00E1: F28 NumberOfLines 25
00E2: F28 OffsetToData: 0x00000D1D
00E6: F29 XOffset : 0
00E7: F29 YOffset : 0
00E8: F29 LineWidth 31
00E9: F29 NumberOfLines 25
00EA: F29 OffsetToData: 0x00000D1D
00EE: F30 XOffset : 0
00EF: F30 YOffset : 0
00F0: F30 LineWidth 31
00F1: F30 NumberOfLines 25
00F2: F30 OffsetToData: 0x00000D1D

Figure 3 – Mage lightning GRP and Frame Headers.

Here we can see that after the first 5 Frame Headers, there are 5 lots of 5
repeats of the same frame header listed.

 If you note that the OffsetToData for the first line of the first frame is 0x000000F6 and the
location of the OffsetToData member for the last frame (30) is 0x00F2, then as it is a
DWORD (4 byte) value; 0xF2 + 4 = 0xF6 demonstrates that the bytestream for frame 1 appears
directly after the last Frame Header... of course, as we know it doesn't necessarily have to
appear here, but in reality as this is the very first byte of pixel data written to the GRP when it
is encoded, there is no real point in putting it anywhere else. Regardless, this need not be relied
upon, it is presented here only as proof of theory and a mnemonic device.

Using Frame headers to do the thinking.
GRP Frame Headers help the WC2 game engine to reduce the amount of work the
graphics engine has to do when rendering each screen update.

Figure 4 – Unit GRP Comparison

The footman and ogre attack animations have 4 frames each, while the peon
attack/chop animation has 5 frames. Both the peon and footman have 3 frames in

their death animation, while the ogre has 5. You can note that there are only 2 sets of
death animation images for each unit to cover the 5 direction categories (meh... it's only

a corpse anyway).

Also of interest is the gold carry GRP set for the peon which really only covers the
'stand' and 'move' actions, but has duplicate frame headers that repeat the images to
also cover the attack and death animations. Presumably this is a safeguard in case a
screen update is triggered after the peon's current action has been updated to 'attack'

or 'dead' but before its GRP set has been switched back to the “standard peon” set.

 The Game Engine vs. The Display Engine.**

The game engine has plenty to do. It spends a lot of its time fussing around its units –
keeping all their various stats, timers, bits and bobs up to date, but there are 4 items of
information that it needs to have ready on a sliver platter for the display engine:

1) The GRP set the unit is using.
2) The current animation index of the unit.
3) The direction the unit is facing.
4) and, of course, the screen co-ords where the unit is to be displayed

It needs to cross check the animation frame update time with the game timer to keep the
animation index correct and up to date, however this value is entirely independent of the
direction the unit is facing. The game engine keeps track of the unit's facing direction, however
it doesn't actually make use of this value.

 ☺ The facing direction is, in fact, a nonsense value which is kept only for
visual aesthetics and plays no part in the game mechanics for any unit. It is
generated according to the direction a unit is moving or attacking, or
randomly updated for a unit that is standing, but it's only purpose is to be
supplied to the display engine so that it can make pretty pictures that appeal
to our funny, squishy, grey CPUs (never really thought about that did you? ;)

The game engine does most of the number crunching for the display engine, because the
state of each unit is updated far less frequently than the screen is rendered. Also, while it
doesn't do this type of 'fancy' (lol) calculations, when the ka-ka hits the whirly-gig, it is the
display engine that has the real mother-load of grunt work to do, unpacking tens of thousands
of GRP pixels into the screen buffer as may times a second as it can manage. So the game
engine keeps the display data updated, and when the display engine has to suddenly render 150
units on the screen without getting bogged down, it has all the information it needs ready to go.

So each unit only has to be updated a couple of times a second if it is active, less if it is
standing, but the screen needs to be updated according to the display frame-rate, Which is...
um... well... I quite honestly have no idea what sort of frame rate WC2 needs to run at to look
normal now I think about it, lol, but I'd take a stab at somewhere around a minimum of 12fps or
so. Anything below that is going to look and feel pretty coarse.... regardless, when the display
code decides it needs to render a given unit, it only needs its 4 pieces of information.

Actually the game engine updating the animation index is only an assumption, as in most cases the only a
small subset of the total units in the game is actually being displayed, so it is possible that that the animation
index is only updated for units being displayed. However when you consider that, for instance, a grunt standing
next to an enemy farm doesn't stop attacking when its not on screen, it seems unlikely.

 *note to self: must inject some code some time to check out the frame-rate...

Deciding which frame to render where
...or “4 pieces of information and how to use them”

In most cases, the GRP set (1) is static for the life of the unit and solely dependent on
the unit type. i.e. Ogres use the ogre GRP, as do ogre-mages and ogre-mage heroes.
This never changes from when the unit is first trained to when its corpse lies rotting on
the battlefield.

The obvious exceptions to this rule are peasants/peons which switch to a different
GRP set when they are carrying gold or wood then switch back to the standard one when
they either attack, die or return their goods. Similarly oil tankers have 2 GRP sets for
when they are/aren't carrying oil, but as tankers can't attack the situation is a lot simpler,
have only 5 directional images and death (sinking) animations in both sets. Also most
buildings share common GRPs for when they are first placed and immediately after
they are destroyed (building corpses).

☼ The animation index (2) and the facing direction (3) are combined to
calculate which frame in the GRP is displayed and how it is displayed, but as
the facing direction never interacts with the animation index (or anything
else) the animation sequences always remain un-compromised provided the
unit's action remains constant. For instance, the 'move' animation remains
fluid even as a unit changes directions multiple times to negotiate obstacles.

(nice☺).

So basically, if the display engine was using the arbitrary (and no-doubt inaccurate)
values I have printed on Figure 4, then assuming direction values are used that start
with '1' for 'North' or facing straight up then proceed clockwise at 45° increments, so
'NE' = 2, 'East'= 3, 'SE'= 4 etc., finishing with NW = 8, it would simply calculate
something similar to this:

☼ First find the final direction index from the unit's facing direction.

IF (facing_direction <= 5) THEN
direction_index = facing_direction
Mirror = False

ELSE
direction_index = 10 - facing_direction
Mirror = True

END

☼ Once the direction index and mirroring state are found, it just displays:

frame number (animation_index – 1)*5 +direction_index

..... at the appropriate screen co-ordinates(4), either mirrored
 or not, as was dictated when we found the direction index.

 Just one comparison, possibly a simple subtraction, a multiplication
by 5 and a simple addition is all the work the display engine has to
do before it does a couple of simple skips down the GRP structure
and starts rendering pixels.

Using this system, all sorts of decisions about what frame to display in what parts of
which animations, and which frames to copy for another purpose etc. can actually be
made by the graphic artists while they drink kale smoothies and compare hipster beards
in another building, and neither the programmer nor the nor the display engine even
need think about it, let alone write or execute code to handle it. The Frame Headers are,
in effect, operating mostly as a pointer table and are saving the game engine from having
to make all sorts decisions about animation sequences every iteration.

Player Colors

There is, of course one more factor in Warcraft 2 unit display: the units are different
colors for each player. This is achieved by using a defined range of palette entries -
shades of red on the source GRP - for the relevant colored parts of each image. These
entries then have a “color shift” value added to them when they are encountered by the
display engine which effectively substitutes shades of the appropriate player's color. This
5th piece of information has been omitted here for the sake of simplicity.

End of the Line: The Pixel Data

So, each frame header has a DWORD field called OffsetToData, it's an offset from the
start of the GRP Header to ... well ... “HERE” =Dthe pixel data. Keep track of the
rest of the frame header members too, we'll need them here.

The Data Header:
WORD LineDataOffset x NumberOfLines

The Data Header simply consists of one WORD offset value for each pixel line in the frame.
LineDataOffset is the offset from the start of the Data Header to the start of the data for each
pixel line. Adding this value to OffsetToData from the relevant Frame Header will yield an offset
from the GRP base. Typically the data for the first pixel line appears directly after the Data Header so
the first LineDataOffset is usually equal to (NumberOfLines x 2)

☼ There are explanations of the offsets and how to detect the end of a pixel
line in the Frame Header section.

The unit portraits and
interface button images are
stored in a single GRP that
contains 198 Frames
measuring 46 x 38 pixels

Figure 5 – Portraits and Buttons

Decoding the Pixel Bytestream
 - The bytestream is list of instructions.
 - Each instruction consists of a Code Byte followed by 0 or more Data Bytes.

So when you have found the start of the data for a pixel line that you wish to
render, read the first BYTE, this will be a Code Byte which will determine the
nature of its instruction as follows:

If the Code Byte > 0x80 then it's a SHIFT instruction

The SHIFT instruction has no Data Bytes
Subtract the 0x80 from the Code Byte to find the shift distance.
Add this value to the destination write pointer.

Elsif the Code Byte > 0x40 then it's a REPEAT instruction

The REPEAT instruction has 1 Data Byte
Subtract the 0x40 from the Code Byte to find the repeat count.
Write the data byte at the destination write pointer target that many times

(incrementing the destination write pointer each time)

Else it's a PIXEL instruction

The PIXEL instruction has a variable number of Data Bytes
The Code Byte value is the pixel count
There are that many Data Bytes of raw pixel data following

(write them out)

Then read the next Code Byte and repeat, until the total of all the:

 shift distance + repeat count + pixel count

...values for the current line equals LineWidth from the Frame Header

Pixel Header FRAME 6

058F: line 01 ofs : 0x0028
0591: line 02 ofs : 0x002C
0593: line 03 ofs : 0x0036
0595: line 04 ofs : 0x0042
0597: line 05 ofs : 0x004B
0599: line 06 ofs : 0x0056
059B: line 07 ofs : 0x005E
059D: line 08 ofs : 0x006A
059F: line 09 ofs : 0x007A
05A1: line 10 ofs : 0x0084
05A3: line 11 ofs : 0x008F
05A5: line 12 ofs : 0x009B
05A7: line 13 ofs : 0x00A6
05A9: line 14 ofs : 0x00B1
05AB: line 15 ofs : 0x00C1
05AD: line 16 ofs : 0x00CE
05AF: line 17 ofs : 0x00D6
05B1: line 18 ofs : 0x00E0
05B3: line 19 ofs : 0x00EB
05B5: line 20 ofs : 0x00F1

Bytestream
line01 CB # Instr Data
05B7: [86] 6 SHIFT
05B8: [01] 1 PIXEL [B7]
05BA: [8C] 12 SHIFT

line02 CB # Instr Data
05BB: [8A] 10 SHIFT
05BC: [01] 1 PIXEL [B7]
05BE: [81] 1 SHIFT
05BF: [01] 1 PIXEL [B7]
05C1: [84] 4 SHIFT
05C2: [01] 1 PIXEL [BB]
05C4: [81] 1 SHIFT

line03 CB # Instr Data
05C5: [83] 3 SHIFT
05C6: [02] 2 PIXEL [BB:BB]
05C9: [84] 4 SHIFT
05CA: [02] 2 PIXEL [BB:BB]
05CD: [86] 6 SHIFT
05CE: [01] 1 PIXEL [BB]
05D0: [81] 1 SHIFT

line04 CB # Instr Data
05D1: [86] 6 SHIFT
05D2: [01] 1 PIXEL [B7]
05D4: [44] 4 REPEAT [BB]
05D6: [82] 2 SHIFT
05D7: [01] 1 PIXEL [B7]
05D9: [85] 5 SHIFT

line05 CB # Instr Data
05DA: [84] 4 SHIFT
05DB: [02] 2 PIXEL [BB:BB]
05DE: [81] 1 SHIFT
05DF: [46] 6 REPEAT [BB]
05E1: [02] 2 PIXEL [B7:BB]
05E4: [84] 4 SHIFT

line06 CB # Instr Data
05E5: [83] 3 SHIFT
05E6: [44] 4 REPEAT [BB]
05E8: [45] 5 REPEAT [71]
05EA: [44] 4 REPEAT [BB]
05EC: [83] 3 SHIFT

line07 CB # Instr Data
05ED: [81] 1 SHIFT
05EE: [01] 1 PIXEL [B7]
05F0: [82] 2 SHIFT
05F1: [02] 2 PIXEL [BB:BB]
05F4: [47] 7 REPEAT [71]
05F6: [44] 4 REPEAT [BB]
05F8: [82] 2 SHIFT

line08 CB # Instr Data
05F9: [81] 1 SHIFT
05FA: [01] 1 PIXEL [BB]
05FC: [81] 1 SHIFT
05FD: [02] 2 PIXEL [BB:BB]
0600: [49] 9 REPEAT [71]
0602: [01] 1 PIXEL [BB]
0604: [81] 1 SHIFT
0605: [02] 2 PIXEL [BB:BB]
0608: [81] 1 SHIFT

line09 CB # Instr Data
0609: [82] 2 SHIFT
060A: [02] 2 PIXEL [BB:BB]
060D: [4B] 11 REPEAT [71]
060F: [02] 2 PIXEL [BB:BB]
0612: [82] 2 SHIFT

line10 CB # Instr Data
0613: [81] 1 SHIFT
0614: [03] 3 PIXEL [BB:BB:BB]
0618: [4B] 11 REPEAT [71]
061A: [02] 2 PIXEL [BB:BB]
061D: [82] 2 SHIFT

line11 CB # Instr Data
061E: [81] 1 SHIFT
061F: [03] 3 PIXEL [BB:BB:BB]
0623: [4B] 11 REPEAT [71]
0625: [04] 4 PIXEL [BB:BB:BB:B7]

line12 CB # Instr Data
062A: [82] 2 SHIFT
062B: [02] 2 PIXEL [BB:BB]
062E: [4B] 11 REPEAT [71]
0630: [03] 3 PIXEL [BB:BB:BB]
0634: [81] 1 SHIFT

line13 CB # Instr Data
0635: [83] 3 SHIFT
0636: [01] 1 PIXEL [BB]
0638: [4B] 11 REPEAT [71]
063A: [02] 2 PIXEL [BB:BB]
063D: [81] 1 SHIFT
063E: [01] 1 PIXEL [BB]

line14 CB # Instr Data
0640: [81] 1 SHIFT
0641: [01] 1 PIXEL [BB]
0643: [81] 1 SHIFT
0644: [02] 2 PIXEL [BB:BB]
0647: [49] 9 REPEAT [71]
0649: [02] 2 PIXEL [BB:BB]
064C: [81] 1 SHIFT
064D: [01] 1 PIXEL [BB]
064F: [81] 1 SHIFT

line15 CB # Instr Data
0650: [01] 1 PIXEL [B7]
0652: [83] 3 SHIFT
0653: [02] 2 PIXEL [BB:BB]
0656: [47] 7 REPEAT [71]
0658: [03] 3 PIXEL [BB:BB:B7]
065C: [83] 3 SHIFT

line16 CB # Instr Data
065D: [83] 3 SHIFT
065E: [44] 4 REPEAT [BB]
0660: [45] 5 REPEAT [71]
0662: [44] 4 REPEAT [BB]
0664: [83] 3 SHIFT

line17 CB # Instr Data
0665: [84] 4 SHIFT
0666: [01] 1 PIXEL [BB]
0668: [81] 1 SHIFT
0669: [46] 6 REPEAT [BB]
066B: [82] 2 SHIFT
066C: [01] 1 PIXEL [BB]
066E: [84] 4 SHIFT

line18 CB # Instr Data
066F: [84] 4 SHIFT
0670: [01] 1 PIXEL [BB]
0672: [83] 3 SHIFT
0673: [05] 5 PIXEL [BB:BB:BB:B7:BB]
0679: [86] 6 SHIFT

line19 CB # Instr Data
067A: [87] 7 SHIFT
067B: [03] 3 PIXEL [BB:BB:BB]
067F: [89] 9 SHIFT

line20 CB # Instr Data
0680: [8D] 13 SHIFT
0681: [01] 1 PIXEL [BB]
0683: [85] 5 SHIFT

 Figure 6 - Pixel Data for mage lightning – frame 6

GRP Format - Quick Reference

GRP Header

WORD NumberOfFrames
WORD CanvasWidth
WORD CanvasHeight

Frame Header [NumberOfFrames]

BYTE XOffset
BYTE YOffset
BYTE LineWidth
BYTE NumberOfLines
DWORD OffsetToData

(offset from GRP Header)

Data Header

WORD LineDataOffset [NumberOfLines]
(offset from Data Header)

Code Bytes

0x01-0x3F PIXEL (+n Data Bytes)
0x41-0x7F REPEAT (+1 Data Byte)
0x81-0xFF SHIFT (No Data Bytes)

In Conclusion

My presumption of the intent of GRP's creation is that it was first and foremost
about optimization... It was about getting the maximum possible graphics
performance out of the hardware of the day, and was successful in that purpose.

With the benefit of the original GRP design, knowledge of its subsequent use and 20 years
worth of hindsight, I might have implemented it slightly differently, however performance-
wise there probably wouldn't be a noticeable improvement, possibly a tiny measurable one,
but one thing that is to me, undeniable (because I remember it vividly) is that when Warcraft
2 first appeared in 1996 it looked better than any computer game I had ever seen.

GRP is more space efficient than traditional image containers, so it also had a positive effect
by reducing RAM and file storage requirements. As the whole point was to get the pixels on
the screen using the fewest possible number of CPU clocks, using any traditional compressed
image format would have been totally counter-productive as it could even have resulted in
more CPU time being used decompressing the images that displaying them. The GRP
designers got around this by building in custom RLE compression that became part of the
optimised bytestream in such a way that it was decompressed as it was being rendered by
the CPU and actually made the process less work instead of more – which is a pretty neat
trick, albeit simple and obvious in hindsight, as the best ideas tend to be.

The only part of the spec that perhaps should have been modified is the 4 BYTE-sized
members present in the Frame Header structure. These would probably have been better
incorporated into the Data Header, leaving the Frame Headers as just an array of DWORD
pointers. To my mind this arrangement would probably have even been slightly faster,
certainly no slower. It would have also resulted in smaller GRP sizes in some cases (and never
larger). It just makes more sense as those 4 members describe the data, and repeating them
for every 'dummy' frame header is just redundant.

Perhaps the X and Y offsets could be varied in duplicate frame headers as a method of
scrolling animation, although I have not seen this being used. Certainly the 2 bytes that
follow describe the data itself. I also might possibly have made them WORD sized instead of
BYTE which would have given GRP a lot more flexibility, but in practice I don't think the
255x255 maximum frame size ever hindered Blizzard's efforts when making 8 bit games.

...however all this is just nit-picking after the fact, because 20 or so years ago, GRP was
designed and implemented and did the exact job it was designed for, and did it well.

 ** N.B. My characterisation herein of two separate entities that I refer to as the “Game Engine” and the “Display
Engine” are just my own projection of how I envisage 2 subsections of the WC2 executable could operate based on
observations about the way the GRP graphics format is implemented and utilised. They are presented as explanatory
tools to highlight the features of GRP graphics format and the way that those feature could be exploited to maximum
effect by the executable and should not be mis-interpreted as any sort of literal description of how this executable
actually functions or is constructed, nor be considered dissemination of any such proprietary information.
 (Dear Lawyers, I made those bits up, if you don't believe me, go ask the programmers ;)

GRP Decoding Routine ASM Source
The following procedure will decode an arbitrary frame from GRP graphics resource, optionally mirrored
about the Y axis (horizontally), to a destination pixmap of arbitrary width. It is assumed that the GRP
object as a whole has already been placed in memory at the supplied address (i.e. Read from any disk
file, should it be contained in such) and that the destination pixmap is in a 1 byte per pixel format
compatible with 8bit palette based graphics hardware, which will be displayed using a palette
appropriate to the GRP resource (the palette itself not forming any part of the GRP object). The {X,Y}
location on the pixmap where the frame is to be displayed should be pre-calculated as per:
PixmapBaseAddress+X+(PixmapWidth*Y) then supplied to the procedure as the destination address.

GRPdecodeFrame proc grpBase :DWORD, \; base address of the GRP

 frame :DWORD, \; frame number (0 based)

 daddr :DWORD, \; destination address

 dwidth :DWORD, \; width of destination pixmap

 mirror :DWORD ; mirror the frame? (bool)

 pushad

 ; find Frame Header

 mov ebx,grpBase

 mov eax,frame

 lea ecx,[ebx+6+eax*8]

 ;edi = frame offset adjusted write address

 mov edi,daddr

 ;YOffset

 xor eax,eax

 mov al,BYTE ptr[ecx+1]

 mul dwidth

 add edi,eax

 ;XOffset

 xor edx,edx

 mov dl,BYTE ptr[ecx]

 add edi,edx

 ;ebx = address of Data Header

 mov esi,[ecx+4]

 add ebx,esi

 ;edx = line width

 mov dl,[ecx+2]

 ;ecx = number of lines

 movzx ecx,BYTE ptr[ecx+3]

 ;esi = address of current LineStartOffset

 mov esi,ebx

 ;get mirror arg before using ebp

 mov eax,mirror

 ;ebp = dwidth

 mov ebp,dwidth

 test eax,eax

 jnz do_mirror

 cld

 ;decode line

 next_line:

 push ecx

 push edx

 push esi

 push edi

 movzx esi,WORD ptr[esi] ; get the LineDataOffset

 add esi,ebx ; add the GRP base address

 ; decode instruction

 next_instruction:

 ; get code byte

 mov cl,[esi]

 inc esi

 ; SHIFT instruction

 cmp cl,80h

 jbe not_shift

sub cl,80h

add edi,ecx

sub dl,cl

jz done_line

jmp next_instruction

 not_shift:

 ; REPEAT instruction

 cmp cl,40h

 jbe not_repeat

sub cl,40h

mov al,[esi]

inc esi

sub dl,cl

jz @F

 rep stosb

 jmp next_instruction

@@:

rep stosb

jmp done_line

 not_repeat:

 ; PIXEL instruction

 sub dl,cl

 jz @F

rep movsb

 jmp next_instruction

 @@:

 rep movsb

 done_line:

 pop edi

 add edi,ebp

 pop esi

 add esi,2

 pop edx

 pop ecx

 loop next_line

 popad

 ret

 ; ===

 ; = Decode the frame mirrored abut the Y-axis =

 ; ===

 do_mirror:

 ; set the direction flag so stosb works backwards

 std

 ; add LineWidth-1 to the output pointer

 ; (start at the end of the line and write backwards)

 add edi,edx

 dec edi

 ;decode line

 next_linem:

 push ecx

 push edx

 push esi

 push edi

 movzx esi,WORD ptr[esi] ; get the LineDataOffset

 add esi,ebx ; add the GRP base

 ; decode instruction

 next_instructionm:

 ; get code byte

 mov cl,[esi]

 inc esi

 ; SHIFT instruction

 cmp cl,80h

 jbe not_shiftm

 sub cl,80h

 sub edi,ecx

 sub dl,cl

 jz done_linem

 jmp next_instructionm

 not_shiftm:

 ; REPEAT instruction

 cmp cl,40h

 jbe not_repeatm

 sub cl,40h

 mov al,[esi]

 inc esi

 sub dl,cl

 jz @F

rep stosb

jmp next_instructionm

 @@:

 rep stosb

 jmp done_linem

 not_repeatm:

 ; PIXEL instruction

 sub dl,cl

 ; can't use movsb here - esi must inc / edi must dec

 @@:

 mov al,[esi]

 mov [edi],al

 inc esi

 dec edi

 loop @B

 test dl,dl

 jnz next_instructionm

 done_linem:

 pop edi

 add edi,ebp

 pop esi

 add esi,2

 pop edx

 pop ecx

 loop next_linem

 cld

 popad

 ret

GRPdecodeFrame endp

